
SALSA Documentation
Release 0.0.5

Vilen Jumutc

August 10, 2016





Contents

1 Installation 3

2 Mathematical background 5

3 References 7

4 Dependencies 9

5 Indices and tables 11
5.1 Data Preprocessing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
5.2 Classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
5.3 Regression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
5.4 Clustering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
5.5 Loss Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
5.6 Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
5.7 Model Tuning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
5.8 Nyström Approximation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
5.9 Examples & notebooks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

Bibliography 25

i



ii



SALSA Documentation, Release 0.0.5

SALSA: Software Lab for Advanced Machine Learning with Stochastic Algorithms is a native Julia
implementation of stochastic algorithms for:

• linear and non-linear Support Vector Machines

• sparse linear modelling

SALSA is an open source project available at Github under the GPLv3 license.

Contents 1
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2 Contents



CHAPTER 1

Installation

The SALSA package can be installed from the Julia command line with Pkg.add("SALSA") or by running the
same command directly with Julia executable by julia -e ’Pkg.add("SALSA")’.
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CHAPTER 2

Mathematical background

The SALSA package aims at stochastically learning a classifier or regressor via the Regularized Empirical Risk Min-
imization [Vapnik1992] framework. We approach a family of the well-known Machine Learning problems of the
type:

min
w

𝑛∑︁
𝑖=1

ℓ(w, 𝜉𝑖) + Ω(w),

where 𝜉𝑖 = (x𝑖, 𝑦𝑖) is given as a pair of input-output variables and belongs to a set 𝒮 = {𝜉𝑡}1≤𝑡≤𝑛 of independent
observations, the loss functions ℓ(w, 𝜉𝑖) measures the disagreement between the true target 𝑦 and the model prediction
𝑦 while the regularization term Ω(w) penalizes the complexity of the model w. We draw uniformly 𝜉𝑖 from 𝒮 at
most 𝑇 times due of the i.i.d. assumption and a fixed computational budget. Online passes and optimization with
the full dataset are available too. The package includes stochastic algorithms for linear and non-linear Support Vector
Machines [Boser1992] and sparse linear modelling [Hastie2015].

Particular choices of loss functions are (but are not restricted to the selection below):

• hinge loss

• logistic loss

• least squares loss

• etc.

Particular choices of the regularization term are:

• 𝑙2-regularization, i.e. ‖𝑤‖22
• 𝑙1-regularization, i.e. ‖𝑤‖1
• reweighted 𝑙2-regularization

• reweighted 𝑙1-regularization
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CHAPTER 3
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CHAPTER 4

Dependencies

• MLBase: to support generic Machine Learning routines

• StatsBase: to support generic routines from Statistics

• Distances: to support distance metrics between vectors

• Distributions: to support sampling from various distributions

• DataFrames: to support and process files instead of in-memory matrices

• Clustering: to support Stochastic K-means Clustering (experimental feature)

• ProgressMeter: to support progress bars and ETA of different routines
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CHAPTER 5

Indices and tables

• genindex

• search

5.1 Data Preprocessing

This part of the package provides a simple set of preprocessing utilities.

5.1.1 Data Normalization

mapstd(X)
Normalizes each column of X to zero mean and one standard deviation. Output normalized matrix X with
extracted column-wise means and standard deviations.

using SALSA

mapstd([0 1; -1 2]) # --> ([0.707107 -0.707107; -0.707107 0.707107], [-0.5 1.5], [0.707107 0.707107])

mapstd(X, mean, std)
Normalizes each column of A to the specified column-wise mean and std. Output normalized matrix X.

using SALSA

mapstd([0 1; -1 2], [-0.5 1.5], [0.707107 0.707107]) # --> [0.707107 -0.707107; -0.707107 0.707107]

5.1.2 Sparse Data Preparation

make_sparse(tuples[, sizes, delim])
Creates SparseMatrixCSC object from matrix of tuples Matrix{ASCIIString} containing
index:value pairs. The index and value pair can be separated by delim character, e.g. :. The user
can optionally specify final dimensions of the SparseMatrixCSC object as sizes tuple.

Parameters

• tuples – matrix of tuples Matrix{ASCIIString} containing index:value pairs

• sizes – optional tuple of final dimensions, e.g. (100000,10) (empty by default)
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• delim – optional character separating index and value pair in each cell of tuples, default
is ”:”

Returns SparseMatrixCSC object.

5.1.3 Data Management

DelimitedFile(name, header, delim)
Creates a wrapper around any delimited file which can be passed to low-level routines, for in-
stance pegasos_alg(). DelimitedFile will be processed in the online mode regardless of the
online_pass==0 flag passed to low-level routines.

Parameters

• name – file name

• header – flag indicating if a header is present

• delim – delimiting character

5.2 Classification

A classification example explained by the usage of SALSA package on the Ripley data set. The SALSA package
provides many different options for stochastically learning a classification model.

This package provides a function salsa and explanation on SALSAModel which accompanies and complements it.
The package provides full-stack functionality including cross-validation of all model- and algorithm-related hyperpa-
rameters.

5.2.1 Knowledge agnostic usage

salsa(X, Y[, Xtest ])
Create a linear classification model with the predicted output 𝑦:

𝑦 = sign(⟨𝑥,𝑤⟩ + 𝑏)

based on data given in X and labeling specified in Y. Optionally evaluate it on Xtest. Data should be given
in row-wise format (one sample per row). The classification model is embedded into the returned model as
model.output. The choice of different algorithms, loss functions and modes will be explained further on
this page.

using SALSA, MAT, Base.Test

srand(1234)
ripley = matread(joinpath(Pkg.dir("SALSA"), "data", "ripley.mat"))

model = salsa(ripley["X"], ripley["Y"], ripley["Xt"]) # --> SALSAModel(...)
@test_approx_eq_eps mean(ripley["Yt"] .== model.output.Ytest) 0.89 0.01

salsa(mode, algorithm, loss, X, Y, Xtest)
Create a classification model with the specified choice of algorithm, mode and loss function.

Parameters

12 Chapter 5. Indices and tables
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• mode – LINEAR vs. NONLINEAR mode specifies whether to use a simple linear classi-
fication model or to apply the Nyström method for approximating the feature map before
proceeding with the learning scheme

• algorithm – stochastic algorithm to learn a classification model, e.g. PEGASOS, L1RDA
etc.

• loss – loss function to use when learning a classification model, e.g. HINGE, LOGISTIC
etc.

• X – training data (samples) represented by Matrix or SparseMatrixCSC

• Y – training labels

• Xtest – test data for out-of-sample evaluation

Returns SALSAModel object.

using SALSA, MAT, Base.Test

srand(1234)
ripley = matread(joinpath(Pkg.dir("SALSA"), "data", "ripley.mat"))

model = salsa(LINEAR, PEGASOS, HINGE, ripley["X"], ripley["Y"], ripley["Xt"])
@test_approx_eq_eps mean(ripley["Yt"] .== model.output.Ytest) 0.89 0.01

5.2.2 Model-based usage

salsa(X, Y, model, Xtest)
Create a classification model based on the provided model and input data

Parameters

• X – training data (samples) represented by Matrix or SparseMatrixCSC

• Y – training labels

• Xtest – test data for out-of-sample evaluation

• model – model is of type SALSAModel{L <: Loss, A <: Algorithm, M
<: Mode, K <: Kernel} and can be summarized as follows (with default values
for named parameters):

•mode::Type{M}: mode used to learn the model: LINEAR vs. NONLINEAR (mandatory parameter)

•algorithm::A: algorithm used to learn the model, e.g. PEGASOS (mandatory parameter)

•loss_function::Type{L}: type of a loss function used to learn the model, e.g. HINGE (mandatory
parameter)

•kernel::Type{K} = RBFKernel: kernel used in NONLINEAR mode to compute Nyström ap-
proximation

•global_opt::GlobalOpt = CSA(): global optimization techniques for tuning hyperparameters

•subset_size::Float64 = 5e-1: subset size used in NONLINEAR mode to compute Nyström
approximation

•max_cv_iter::Int = 1000: maximal number of iterations (budget) for any algorithm in training
CV

•max_iter::Int = 1000: maximal number of iterations (budget) for any algorithm for final training

5.2. Classification 13
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•max_cv_k::Int = 1: maximal number of data points used to compute loss derivative in training CV

•max_k::Int = 1: maximal number of data points used to compute loss derivative for final training

•online_pass::Int = 0: if > 0 we are in the online learning setting going through the entire dataset
online_pass times

•normalized::Bool = true: normalize data (extracting mean and std) before passing it to CV and
final learning

•process_labels::Bool = true: process labels to comply with binary (-1 vs. 1) or multi-class
classification encoding

•tolerance::Float64 = 1e-5: the criterion is evaluated for early stopping (online_pass==0)
||𝑤𝑡+1 − 𝑤𝑡|| <= 𝑡𝑜𝑙𝑒𝑟𝑎𝑛𝑐𝑒

•sparsity_cv::Float64 = 2e-1: sparsity weight in the combined cross-validation/sparsity crite-
rion used for the RDA type of algorithms

•validation_criterion = MISCLASS(): validation criterion used to verify the generalization
capabilities of the model in cross-validation

Returns SALSAModel object with model.output of type OutputModel structured as fol-
lows:

•dfunc::Function: loss function derived from the type specified in loss_function::Type{L}
(above)

•alg_params::Vector: vector of model- and algorithm-specific hyperparameters obtained via cross-
validation

•X_mean::Matrix: row (vector) of extracted column-wise means of input X if normalized::Bool
= true

•X_std::Matrix: row (vector) of extracted column-wise standard deviations of input X if
normalized::Bool = true

•mode::M: mode used to learn the model: LINEAR vs. NONLINEAR

•w: found solution vector (matrix)

•b: found solution offset (bias)

using SALSA, MAT, Base.Test

srand(1234)
ripley = matread(joinpath(Pkg.dir("SALSA"), "data", "ripley.mat"))

model = SALSAModel(NONLINEAR, R_L1RDA(), HINGE, global_opt=CSA())
model = salsa(ripley["X"], ripley["Y"], model, ripley["Xt"])
@test_approx_eq_eps mean(ripley["Yt"] .== model.output.Ytest) 0.895 0.01

5.3 Regression

A regression example is explained for the SALSA package by the sinc(x) = sin(x)./x function.

This package provides a function salsa and explanation on SALSAModel for the regression case. This use case is
supported by the Fixed-Size approach [FS2010] and Nyström approximation with the specific LEAST_SQUARES()
loss function and cross-validation criterion mse() (mean-squared error).
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using SALSA, Base.Test

srand(1234)
sinc(x) = sin(x)./x
X = linspace(0.1,20,100)''
Xtest = linspace(0.11,19.9,100)''
y = sinc(X)

model = SALSAModel(NONLINEAR, SIMPLE_SGD(), LEAST_SQUARES,
validation_criterion=MSE(), process_labels=false)

model = salsa(X, y, model, Xtest)

@test_approx_eq_eps mse(sinc(Xtest), model.output.Ytest) 0.05 0.01

By taking a look at the code snippet above we can notice a major difference with the Classification example. The
model is equipped with the NONLINEAR mode, LEAST_SQUARES loss function while the cross-validation criterion
is given by MSE. Another important model-related parameter is process_labels which should be set to false
in order to switch into regression mode. These four essential components unambiguously define a regression problem
solved stochastically by the SALSA package.

5.4 Clustering

A clustering example is explained for the SALSA package on the Iris dataset [UCI2010].

This package provides a function salsa and explanation on SALSAModel for the clustering case. This use case
is supported by the particular choices of loss functions and distance metrics applied within the Regularized K-Means
approach [JS2015] and cross-validation criterion SILHOUETTE (Silhouette index).

using SALSA, Clustering, Distances, MLBase, Base.Test

Xf = readcsv(joinpath(Pkg.dir("SALSA"), "data", "iris.data.csv"))
Y = convert(Array{Int}, Xf[:,end])
k_clusters = length(unique(Y))
dY = Array{Int}(length(Y))
X = Xf[:,1:end-1]
srand(1234)

algorithm = RK_MEANS(k_clusters)
model = SALSAModel(LINEAR, algorithm, LEAST_SQUARES,

validation_criterion=SILHOUETTE(),
global_opt=DS([-1]), process_labels=false,
cv_gen = Nullable{CrossValGenerator}(Kfold(length(Y),3)))

model = salsa(X, dY, model, X)
mappings = model.output.Ytest

By taking a close look at the code snippet above we can notice that we use a special type of an algorithm RK_MEANS()
which implements approach in [JS2015]. By instantiating RK_MEANS(k_clusters)we provide a maximum num-
ber of clusters to be extracted. Learning of individual prototype vectors will be repeated algorithm.max_iter
times after re-partitioning of the dataset X (by default algorithm.max_iter==20). The default choice of the loss
function is LEAST_SQUARES and the distance metric is Euclidean() 1. This corresponds to the original setting of
the unregularized K-Means approach. Please refer to Algorithms section and RK_MEANS() function for more details
regarding which combinations of loss functions and metrics are supported.

1 metric types are defined in Distances.jl package

5.4. Clustering 15
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5.5 Loss Functions

This part of the package provides a description and mathematical background of the implemented loss functions. Every
loss function can be supplied to salsa subroutines either directly (see salsa()) or passed within SALSAModel.
In the definitions below 𝑙(𝑦, 𝑝) stands for the loss loss function evaluated at the true label 𝑦 and a prediction 𝑝.

HINGE()
Defines an implementation of the Hinge Loss function, i.e. 𝑙(𝑦, 𝑝) = max(0, 1 − 𝑦𝑝).

LOGISTIC()
Defines an implementation of the Logistic Loss function, i.e. 𝑙(𝑦, 𝑝) = log(1 + exp(−𝑦𝑝)).

LEAST_SQUARES()
Defines an implementation of the Least Squares Loss function, i.e. 𝑙(𝑦, 𝑝) = 1

2 (𝑝− 𝑦)2.

SQUARED_HINGE()
Defines an implementation of the Squared Hinge Loss function, i.e. 𝑙(𝑦, 𝑝) = max(0, 1 − 𝑦𝑝)2.

PINBALL()
Defines an implementation of the Pinball (Quantile) Loss function, i.e.

𝑙(𝑦, 𝑝) =

{︂
1 − 𝑦𝑝, if yp ≤ 1,
𝜏(𝑦𝑝− 1), otherwise

If PINBALL loss is selected 𝜏 parameter will be tuned by the build-in cross-validation routines.

MODIFIED_HUBER()
Defines an implementation of the Modified Huber Loss function, i.e.

𝑙(𝑦, 𝑝) =

{︂
−4𝑦𝑝, if yp < −1
max(0, 1 − 𝑦𝑝)2, otherwise

loss_derivative(type)
Defines a derivative of the loss function. One can pass any type of the loss function, e.g. HINGE or an entire
algorithm, for instance RK_MEANS().

Parameters type – type of the loss function, e.g. HINGE or an entire algorithm

Returns Function which calculates a derivative at the current iterate 𝑤𝑡, subsample 𝒜𝑡 and label
𝑦𝑡

5.6 Algorithms

This part of the package provides a description, API and references to the implemented core algorithmic schemes
(solvers) available in the SALSA package. Every algorithm can be supplied as a type to salsa subroutines either
directly (see salsa()) or passed within SALSAModel. Please refer to Classification section for examples. Another
available API is shipped with direct calls to algorithmic schemes. The latter is the most primitive and basic way of
using SALSA package.

5.6.1 Available high-level API

PEGASOS()
Defines an implementation (see pegasos_alg()) of the Pegasos: Primal Estimated sub-GrAdient SOlver for
SVM which solves 𝑙2-regularized problem defined here.

16 Chapter 5. Indices and tables
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L1RDA()
Defines an implementation (see l1rda_alg()) of the l1-Regularized Dual Averaging solver which solves
𝑙1-regularized problem defined here.

ADA_L1RDA()
Defines an implementation (see adaptive_l1rda_alg()) of the Adaptive l1-Regularized Dual Averaging
solver which solves 𝑙1-regularized problem defined here in an adaptive way 1.

R_L1RDA()
Defines an implementation (see reweighted_l1rda_alg()) of the Reweighted l1-Regularized Dual Av-
eraging solver which approximates 𝑙0-regularized problem in a limit.

R_L2RDA()
Defines an implementation (see reweighted_l2rda_alg()) of the Reweighted l2-Regularized Dual Av-
eraging solver which approximates 𝑙0-regularized problem in a limit.

SIMPLE_SGD()
Defines an implementation (see sgd_alg()) of the unconstrained Stochastic Gradient Descent scheme which
solves 𝑙2-regularized problem defined here.

RK_MEANS(support_alg, k_clusters, max_iter, metric)
Defines an implementation (see stochastic_rk_means()) of the Regularized Stochastic K-Means ap-
proach [JS2015]. Please refer to Clustering section for examples.

Parameters

• support_alg – underlying support algorithm, e.g. PEGASOS

• k_clusters – number of clusters to be extracted

• max_iter – maximum number of outer iterations

• metric – metric to evaluate distances to centroids 2

Selected metric unambiguously define a loss function used to learn centroids. Currently supported metrics
are:

•Euclidean() which is complemented by LEAST_SQUARES() loss function

•CosineDist() which is complemented by HINGE() loss function

5.6.2 Available low-level API

pegasos_alg(dfunc, X, Y, 𝜆, k, max_iter, tolerance[, online_pass=0, train_idx=[]])
Parameters

• dfunc – supplied loss function derivative (see loss_derivative())

• X – training data (samples are stacked row-wise) represented by Matrix,
SparseMatrixCSC or DelimitedFile()

• Y – training labels corresponding to X

• 𝜆 – trade-off hyperparameter

• k – sampling size at each iteration 𝑡

• max_iter – maximum number of iterations (budget)

• tolerance – early stopping threshold, i.e. ||𝑤𝑡+1 − 𝑤𝑡|| <= 𝑡𝑜𝑙𝑒𝑟𝑎𝑛𝑐𝑒

1 adaptation is taken with respect to observed (sub)gradients of the loss function
2 metric types are defined in Distances.jl package

5.6. Algorithms 17
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• online_pass – number of online passes through data, online_pass=0 indicates a
default stochastic mode instead of an online mode

• train_idx – subset of indices from X used to learn a model (𝑤, 𝑏)

Returns 𝑤, 𝑏

sgd_alg(dfunc, X, Y, 𝜆, k, max_iter, tolerance[, online_pass=0, train_idx=[]])
Parameters

• dfunc – supplied loss function derivative (see loss_derivative())

• X – training data (samples are stacked row-wise) represented by Matrix,
SparseMatrixCSC or DelimitedFile()

• Y – training labels corresponding to X

• 𝜆 – trade-off hyperparameter

• k – sampling size at each iteration 𝑡

• max_iter – maximum number of iterations (budget)

• tolerance – early stopping threshold, i.e. ||𝑤𝑡+1 − 𝑤𝑡|| <= 𝑡𝑜𝑙𝑒𝑟𝑎𝑛𝑐𝑒

• online_pass – number of online passes through data, online_pass=0 indicates a
default stochastic mode instead of an online mode

• train_idx – subset of indices from X used to learn a model (𝑤, 𝑏)

Returns 𝑤, 𝑏

l1rda_alg(dfunc, X, Y, 𝜆, 𝛾, 𝜌, k, max_iter, tolerance[, online_pass=0, train_idx=[]])
Parameters

• dfunc – supplied loss function derivative (see loss_derivative())

• X – training data (samples are stacked row-wise) represented by Matrix,
SparseMatrixCSC or DelimitedFile()

• Y – training labels corresponding to X

• 𝜆 – trade-off hyperparameter

• 𝛾 – hyperparameter involved in elastic-net regularization

• 𝜌 – hyperparameter involved in elastic-net regularization

• k – sampling size at each iteration 𝑡

• max_iter – maximum number of iterations (budget)

• tolerance – early stopping threshold, i.e. ||𝑤𝑡+1 − 𝑤𝑡|| <= 𝑡𝑜𝑙𝑒𝑟𝑎𝑛𝑐𝑒

• online_pass – number of online passes through data, online_pass=0 indicates a
default stochastic mode instead of an online mode

• train_idx – subset of indices from X used to learn a model (𝑤, 𝑏)

Returns 𝑤, 𝑏

adaptive_l1rda_alg(dfunc, X, Y, 𝜆, 𝛾, 𝜌, k, max_iter, tolerance[, online_pass=0, train_idx=[]])
Parameters

• dfunc – supplied loss function derivative (see loss_derivative())
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• X – training data (samples are stacked row-wise) represented by Matrix,
SparseMatrixCSC or DelimitedFile()

• Y – training labels corresponding to X

• 𝜆 – trade-off hyperparameter

• 𝛾 – hyperparameter involved in elastic-net regularization

• 𝜌 – hyperparameter involved in elastic-net regularization

• k – sampling size at each iteration 𝑡

• max_iter – maximum number of iterations (budget)

• tolerance – early stopping threshold, i.e. ||𝑤𝑡+1 − 𝑤𝑡|| <= 𝑡𝑜𝑙𝑒𝑟𝑎𝑛𝑐𝑒

• online_pass – number of online passes through data, online_pass=0 indicates a
default stochastic mode instead of an online mode

• train_idx – subset of indices from X used to learn a model (𝑤, 𝑏)

Returns 𝑤, 𝑏

reweighted_l1rda_alg(dfunc, X, Y, 𝜆, 𝛾, 𝜌, , max_iter, tolerance[, online_pass=0, train_idx=[]])
Parameters

• dfunc – supplied loss function derivative (see loss_derivative())

• X – training data (samples are stacked row-wise) represented by Matrix,
SparseMatrixCSC or DelimitedFile()

• Y – training labels corresponding to X

• 𝜆 – trade-off hyperparameter

• 𝛾 – hyperparameter involved in reweighted formulation of a regularization term

• 𝜌 – hyperparameter involved in reweighted formulation of a regularization term

• – reweighting hyperparameter

• k – sampling size at each iteration 𝑡

• max_iter – maximum number of iterations (budget)

• tolerance – early stopping threshold, i.e. ||𝑤𝑡+1 − 𝑤𝑡|| <= 𝑡𝑜𝑙𝑒𝑟𝑎𝑛𝑐𝑒

• online_pass – number of online passes through data, online_pass=0 indicates a
default stochastic mode instead of an online mode

• train_idx – subset of indices from X used to learn a model (𝑤, 𝑏)

Returns 𝑤, 𝑏

reweighted_l2rda_alg(dfunc, X, Y, 𝜆, , var, max_iter, tolerance[, online_pass=0, train_idx=[]])
Parameters

• dfunc – supplied loss function derivative (see loss_derivative())

• X – training data (samples are stacked row-wise) represented by Matrix,
SparseMatrixCSC or DelimitedFile()

• Y – training labels corresponding to X

• 𝜆 – trade-off hyperparameter

• – reweighting hyperparameter
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• var – sparsification hyperparameter

• k – sampling size at each iteration 𝑡

• max_iter – maximum number of iterations (budget)

• tolerance – early stopping threshold, i.e. ||𝑤𝑡+1 − 𝑤𝑡|| <= 𝑡𝑜𝑙𝑒𝑟𝑎𝑛𝑐𝑒

• online_pass – number of online passes through data, online_pass=0 indicates a
default stochastic mode instead of an online mode

• train_idx – subset of indices from X used to learn a model (𝑤, 𝑏)

Returns 𝑤, 𝑏

stochastic_rk_means(X, rk_means, alg_params, max_iter, tolerance[, online_pass=0, train_idx=[]])
Parameters

• X – training data (samples are stacked row-wise) represented by Matrix,
SparseMatrixCSC or DelimitedFile()

• rk_means – algorithm defined by RK_MEANS()

• alg_params – hyperparameter of the supporting algorithm in
rk_means.support_alg

• k – sampling size at each iteration 𝑡

• max_iter – maximum number of iterations (budget)

• tolerance – early stopping threshold, i.e. ||𝑤𝑡+1 − 𝑤𝑡|| <= 𝑡𝑜𝑙𝑒𝑟𝑎𝑛𝑐𝑒

• online_pass – number of online passes through data, online_pass=0 indicates a
default stochastic mode instead of an online mode

• train_idx – subset of indices from X used to learn a model (𝑤, 𝑏)

Returns 𝑤, 𝑏

5.7 Model Tuning

This part of the package provides a simple API for model-tuning routines.

gen_cross_validate(evalfun, n, model)
Perform in parallel a generic cross-validation (CV) routine defined in evalfun by the splitting specified in
model.cv_gen.

Parameters

• evalfun – function to evaluate

• n – total number of data points (instances) to create Kfold CV generator if
model.cv_gen is undefined (null)

• model – SALSAModel which contains the cv_gen field of type
Nullable{CrossValGenerator} 1 or model.output.cv_folds field contain-
ing predefined indices for each fold

Returns an average of evalfun evaluations.

misclass(y, yhat)
Calculate misclassification rate as 1

𝑛

∑︀𝑛
𝑖=1 𝐼(𝑦𝑖 ̸= 𝑦𝑖).

1 wrapper around the type defined in MLBase.jl package
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mse(y, yhat)
Calculate mean squared error as 1

𝑛‖𝑦 − 𝑦‖2

auc(y, yhat[, n=100])
Calculate Area Under ROC Curve. Default number of thresholds is 100.

5.8 Nyström Approximation

While linear techniques operating in the primal (input) space are able to achieve good generalization capabilities
in some specific application areas, one cannot in general approximate with the linear model more complex or highly
nonlinear functions. We apply a Fixed-Size approach [FS2010] and Nyström approximation [WS2001] to approximate
a kernel-induced feature map with some higher dimensional explicit and approximate feature vector.

We select prototype vectors (a small working sample of size 𝑚 ≪ 𝑛) and construct, for instance an RBF kernel matrix
𝐾 with

𝐾𝑖𝑗 = 𝑒−
‖𝑥𝑖−𝑥𝑗‖

2

2𝜎2 .

By following the approach in [WS2001] an expression for the entries of the approximated feature map Φ̂(𝑥) : R𝑑 →
R𝑚, with Φ̂(𝑥) = (Φ̂1(𝑥), . . . , Φ̂𝑚(𝑥))𝑇 is given by

Φ̂𝑖(𝑥) =
1√︀
𝜆𝑖,𝑚

𝑚∑︁
𝑡=1

𝑢𝑡𝑖,𝑚𝑘(𝑥𝑡, 𝑥),

where 𝜆𝑖,𝑚 and 𝑢𝑖,𝑚 denote the i-th eigenvalue and the i-th eigenvector of 𝐾.

5.8.1 Available API

AFEm(Xs, kernel, X)
Performs Automatic Feature Extraction (AFE) by Nyström method [WS2001] using a subsample 𝑋𝑠 ∈ 𝑋 . We
restrict kernel <: Kernel to be a subclass of Kernel, for instance RBFKernel.

Parameters

• Xs – subset which is used to construct kernel matrix 𝐾

• kernel – kernel function, e.g. RBFKernel(), used to construct kernel matrix 𝐾

• X – full dataset

Returns new dataset 𝑋𝑓 derived from stacking together feature maps for every 𝑥𝑖 ∈ 𝑋

entropy_subset(X, kernel, subset_size)
Performs maximization of the quadratic Rényi Entropy by the representative points selection from X which can
be supplied to AFEm as Xs subset.

Parameters

• X – full dataset

• kernel – kernel function, e.g. RBFKernel(), used to construct kernel matrix 𝐾 over
which we compute Rényi Entropy

• subset_size – number of representative data points
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5.8.2 Available Kernel Functions

LinearKernel()
Defines an implementation of the Linear Kernel, i.e. 𝑘(𝑥, 𝑦) = ⟨𝑥, 𝑦⟩.

PolynomialKernel()
Defines an implementation of the Polynomial Kernel, i.e. 𝑘(𝑥, 𝑦) = (⟨𝑥, 𝑦⟩ + 𝜏)𝑑.

RBFKernel()
Defines an implementation of the Radial Basis Function (RBF) Kernel, i.e. 𝑘(𝑥, 𝑦) = exp(−‖𝑥−𝑦‖2

2𝜎2 ).

5.9 Examples & notebooks

5.9.1 Prerequisites

Please refer to Julia downloads page for installing Julia language and all dependencies. The instructions for installing
the SALSA package can be found here. Some additional plotting and data management packages might be required
to run examples below (like Gadfly, MAT or DataFrames). If you prefer Python-style notebooks please refer to
the Project Jupyter and IJulia package for instructions. In this section we provide code snippets which can be easily
copied into the Julia console or Jupyter notebook. Please find an explanation on examples and functional IJulia
notebooks online.

5.9.2 Advanced Classification

This example provides a use-case for nonlinear classification using Nyström approximation and Area Under ROC
Curve (with 100 thresholds) as a cross-validation criterion.

using SALSA, MAT

ripley = matread(joinpath(Pkg.dir("SALSA"), "data", "ripley.mat")); srand(123);
model = SALSAModel(NONLINEAR, PEGASOS(), LOGISTIC, validation_criterion=AUC(100));
model = salsa(ripley["X"], ripley["Y"], model, ripley["Xt"]);

range1 = linspace(-1.5,1.5,200);
range2 = linspace(-0.5,1.5,200);
grid = [[i j] for i in range1, j in range2];

Xgrid = foldl(vcat, grid);
Xtest = ripley["Xt"];

yhat = model.output.Ytest;
yplot = map_predict_latent(model,Xgrid);
yplot = yplot - minimum(yplot);
yplot = 2*(yplot ./ maximum(yplot)) - 1;

using DataFrames
df = DataFrame();
df[:X] = Xgrid[:,1][:];
df[:Y] = Xgrid[:,2][:];
df[:class] = yplot[:];

using Gadfly
set_default_plot_size(20cm, 20cm);
plot(layer(x=Xtest[yhat.>0,1], y=Xtest[yhat.>0,2], Geom.point, Theme(default_color=colorant"orange")),
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layer(x=Xtest[yhat.<0,1], y=Xtest[yhat.<0,2], Geom.point, Theme(default_color=colorant"black")),
layer(df, x="X", y="Y", color="class", Geom.rectbin))

5.9.3 Advanced Regression

This example provides a use-case for regression using Nyström approximation and mse() (Mean Squared Error) as
a criterion in the Leave-One-Out cross-validation defined in MLBase.jl package.

using SALSA, MLBase

sinc(x) = sin(x)./x;
X = linspace(0.1,20,100)'';
Xtest = linspace(0.1,20,200)'';
Y = sinc(X);
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srand(1234);

model = SALSAModel(NONLINEAR, PEGASOS(), LEAST_SQUARES,
cv_gen=Nullable{CrossValGenerator}(LOOCV(100)),
validation_criterion=MSE(), process_labels=false, subset_size=5.0);

model = salsa(X, Y, model, Xtest);

using Gadfly
set_default_plot_size(20cm, 20cm);
plot(layer(x=Xtest[:], y=sinc(Xtest), Geom.point),

layer(x=Xtest[:], y=model.output.Ytest, Geom.line, Theme(default_color=colorant"orange")))
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