

 Navigation

 	
 index

 	
 next |

 	SALSA 0.0.5 documentation

 [image: SALSA.jl]
[image: SALSA.jl]

Welcome to SALSA’s documentation!

 [https://travis-ci.org/jumutc/SALSA.jl]
 [https://coveralls.io/r/jumutc/SALSA.jl][image: Documentation Status]
 [https://readthedocs.org/projects/salsajl/]SALSA: Software Lab for Advanced Machine Learning with Stochastic Algorithms is a native Julia [http://julialang.org] implementation of stochastic algorithms for:

	linear and non-linear Support Vector Machines

	sparse linear modelling

SALSA is an open source project available at Github [http://github.com/jumutc/SALSA.jl] under the GPLv3 [https://github.com/jumutc/SALSA.jl/blob/master/LICENSE] license.

Installation

The SALSA package can be installed from the Julia command line with Pkg.add("SALSA") or by running the same command directly with Julia executable by julia -e 'Pkg.add("SALSA")'.

Mathematical background

The SALSA package aims at stochastically learning a classifier or regressor via the Regularized Empirical Risk Minimization [Vapnik1992] framework. We approach a family of the well-known Machine Learning problems of the type:

[image: \min_{\bf w} \sum_{i=1}^n \ell({\bf w},\xi_i) + \Omega({\bf w}),]

where [image: \xi_i = ({\bf x}_i,y_i)] is given as a pair of input-output variables and belongs to a set [image: \mathcal{S} = \{\xi_{t}\}_{1 \leq t \leq n}] of independent observations, the loss functions [image: \ell({\bf w},\xi_i)] measures the disagreement between the true target [image: y] and the model prediction [image: \hat{y}] while the regularization term [image: \Omega({\bf w})] penalizes the complexity of the model [image: {\bf w}]. We draw uniformly [image: \xi_i] from [image: \mathcal{S}] at most [image: T] times due of the i.i.d. [https://en.wikipedia.org/wiki/Independent_and_identically_distributed_random_variables] assumption and a fixed computational budget. Online passes and optimization with the full dataset are available too. The package includes stochastic algorithms for linear and non-linear Support Vector Machines [Boser1992] and sparse linear modelling [Hastie2015].

Particular choices of loss functions are (but are not restricted to the selection below):

	hinge loss [https://en.wikipedia.org/wiki/Hinge_loss]

	logistic loss [https://en.wikipedia.org/wiki/Loss_functions_for_classification#Logistic_loss]

	least squares loss [https://en.wikipedia.org/wiki/Mean_squared_error]

	etc.

Particular choices of the regularization term [https://en.wikipedia.org/wiki/Regularization_(mathematics)] are:

	[image: l_2]-regularization, i.e. [image: \|w\|_2^2]

	[image: l_1]-regularization [https://en.wikipedia.org/wiki/Least_squares#Lasso_method], i.e. [image: \|w\|_1]

	reweighted [image: l_2]-regularization [ftp://ftp.esat.kuleuven.be/pub/SISTA/vjumutc/reports/isnn2014_jumutc_suykens.pdf]

	reweighted [image: l_1]-regularization [ftp://ftp.esat.kuleuven.be/pub/SISTA/vjumutc/reports/reweighted_l1rda_jumutc_suykens.pdf]

References

SALSA is stemmed from the following algorithmic approaches:

	Pegasos [http://ttic.uchicago.edu/~shai/papers/ShalevSiSr07.pdf]: S. Shalev-Shwartz, Y. Singer, N. Srebro, Pegasos: Primal Estimated sub-GrAdient SOlver for SVM, in: Proceedings of the 24th international conference on Machine learning, ICML ’07, New York, NY, USA, 2007, pp. 807–814.

	RDA [http://research.microsoft.com/pubs/141578/xiao10JMLR.pdf]: L. Xiao, Dual averaging methods for regularized stochastic learning and online optimization, J. Mach. Learn. Res. 11 (2010), pp. 2543–2596.

	Adaptive RDA [http://www.jmlr.org/papers/volume12/duchi11a/duchi11a.pdf]: J. Duchi, E. Hazan, Y. Singer, Adaptive subgradient methods for online learning and stochastic optimization, J. Mach. Learn. Res. 12 (2011), pp. 2121–2159.

	Reweighted RDA [ftp://ftp.esat.kuleuven.be/pub/SISTA/vjumutc/reports/isnn2014_jumutc_suykens.pdf]: V. Jumutc, J.A.K. Suykens, Reweighted stochastic learning, Neurocomputing Special Issue - ISNN2014, 2015. (In Press)

Dependencies

	MLBase [https://github.com/JuliaStats/MLBase.jl]: to support generic Machine Learning routines

	StatsBase [https://github.com/JuliaStats/StatsBase.jl]: to support generic routines from Statistics

	Distances [https://github.com/JuliaStats/Distances.jl]: to support distance metrics between vectors

	Distributions [https://github.com/JuliaStats/Distributions.jl]: to support sampling from various distributions

	DataFrames [https://github.com/JuliaStats/DataFrames.jl]: to support and process files instead of in-memory matrices

	Clustering [https://github.com/JuliaStats/Clustering.jl]: to support Stochastic K-means Clustering (experimental feature)

	ProgressMeter [https://github.com/timholy/ProgressMeter.jl]: to support progress bars and ETA of different routines

Indices and tables

	Index

	Search Page

	[Vapnik1992]	Vapnik, Vladimir. “Principles of risk minimization for learning theory”, In Advances in neural information processing systems (NIPS), pp. 831-838. 1992.

	[Boser1992]	Boser, B., Guyon, I., Vapnik, V. “A training algorithm for optimal margin classifiers”, In Proceedings of the fifth annual workshop on Computational learning theory - COLT‘92., pp. 144-152, 1992.

	[Hastie2015]	Hastie T., Tibshirani R., Wainwright M. Statistical Learning with Sparsity: The Lasso and Generalizations, Chapman & Hall/CRC Monographs on Statistics & Applied Probability, 2015.

 Copyright 2015, Vilen Jumutc.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	SALSA 0.0.5 documentation

Data Preprocessing

This part of the package provides a simple set of preprocessing utilities.

Data Normalization

	
mapstd(X)

	Normalizes each column of X to zero mean and one standard deviation. Output normalized matrix X with extracted column-wise means and standard deviations.

using SALSA

mapstd([0 1; -1 2]) # --> ([0.707107 -0.707107; -0.707107 0.707107], [-0.5 1.5], [0.707107 0.707107])

	
mapstd(X, mean, std)

	Normalizes each column of A to the specified column-wise mean and std. Output normalized matrix X.

using SALSA

mapstd([0 1; -1 2], [-0.5 1.5], [0.707107 0.707107]) # --> [0.707107 -0.707107; -0.707107 0.707107]

Sparse Data Preparation

	
make_sparse(tuples[, sizes, delim])

	Creates SparseMatrixCSC object from matrix of tuples Matrix{ASCIIString} containing index:value pairs. The index and value pair can be separated by delim character, e.g. :. The user can optionally specify final dimensions of the SparseMatrixCSC object as sizes tuple.

	Parameters:	
	tuples – matrix of tuples Matrix{ASCIIString} containing index:value pairs

	sizes – optional tuple of final dimensions, e.g. (100000,10) (empty by default)

	delim – optional character separating index and value pair in each cell of tuples, default is ”:”

	Returns:	SparseMatrixCSC object.

Data Management

	
DelimitedFile(name, header, delim)

	Creates a wrapper around any delimited file which can be passed to low-level routines, for instance pegasos_alg(). DelimitedFile will be processed in the online mode regardless of the online_pass==0 flag passed to low-level routines.

	Parameters:	
	name – file name

	header – flag indicating if a header is present

	delim – delimiting character

 Copyright 2015, Vilen Jumutc.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	SALSA 0.0.5 documentation

Classification

A classification example explained by the usage of SALSA package on the Ripley [http://www.esat.kuleuven.be/sista/lssvmlab/tutorial/node14.html] data set. The SALSA package provides many different options for stochastically learning a classification model.

This package provides a function salsa and explanation on SALSAModel which accompanies and complements it. The package provides full-stack functionality including cross-validation of all model- and algorithm-related hyperparameters.

Knowledge agnostic usage

	
salsa(X, Y[, Xtest])

	Create a linear classification model with the predicted output [image: \hat{y}]:

[image: \hat{y} = \mathrm{sign}(\langle x, w \rangle + b)]

based on data given in X and labeling specified in Y. Optionally evaluate it on Xtest. Data should be given in row-wise format (one sample per row). The classification model is embedded into the returned model as model.output. The choice of different algorithms, loss functions and modes will be explained further on this page.

using SALSA, MAT, Base.Test

srand(1234)
ripley = matread(joinpath(Pkg.dir("SALSA"), "data", "ripley.mat"))

model = salsa(ripley["X"], ripley["Y"], ripley["Xt"]) # --> SALSAModel(...)
@test_approx_eq_eps mean(ripley["Yt"] .== model.output.Ytest) 0.89 0.01

	
salsa(mode, algorithm, loss, X, Y, Xtest)

	Create a classification model with the specified choice of algorithm, mode and loss function.

	Parameters:	
	mode – LINEAR vs. NONLINEAR mode specifies whether to use a simple linear classification model or to apply the Nyström method for approximating the feature map before proceeding with the learning scheme

	algorithm – stochastic algorithm to learn a classification model, e.g. PEGASOS, L1RDA etc.

	loss – loss function to use when learning a classification model, e.g. HINGE, LOGISTIC etc.

	X – training data (samples) represented by Matrix or SparseMatrixCSC

	Y – training labels

	Xtest – test data for out-of-sample evaluation

	Returns:	SALSAModel object.

using SALSA, MAT, Base.Test

srand(1234)
ripley = matread(joinpath(Pkg.dir("SALSA"), "data", "ripley.mat"))

model = salsa(LINEAR, PEGASOS, HINGE, ripley["X"], ripley["Y"], ripley["Xt"])
@test_approx_eq_eps mean(ripley["Yt"] .== model.output.Ytest) 0.89 0.01

Model-based usage

	
salsa(X, Y, model, Xtest)

	Create a classification model based on the provided model and input data

	Parameters:	
	X – training data (samples) represented by Matrix or SparseMatrixCSC

	Y – training labels

	Xtest – test data for out-of-sample evaluation

	model – model is of type SALSAModel{L <: Loss, A <: Algorithm, M <: Mode, K <: Kernel} and can be summarized as follows (with default values for named parameters):

	mode::Type{M}: mode used to learn the model: LINEAR vs. NONLINEAR (mandatory parameter)

	algorithm::A: algorithm used to learn the model, e.g. PEGASOS (mandatory parameter)

	loss_function::Type{L}: type of a loss function used to learn the model, e.g. HINGE (mandatory parameter)

	kernel::Type{K} = RBFKernel: kernel used in NONLINEAR mode to compute Nyström approximation

	global_opt::GlobalOpt = CSA(): global optimization techniques for tuning hyperparameters

	subset_size::Float64 = 5e-1: subset size used in NONLINEAR mode to compute Nyström approximation

	max_cv_iter::Int = 1000: maximal number of iterations (budget) for any algorithm in training CV

	max_iter::Int = 1000: maximal number of iterations (budget) for any algorithm for final training

	max_cv_k::Int = 1: maximal number of data points used to compute loss derivative in training CV

	max_k::Int = 1: maximal number of data points used to compute loss derivative for final training

	online_pass::Int = 0: if > 0 we are in the online learning setting going through the entire dataset online_pass times

	normalized::Bool = true: normalize data (extracting mean and std) before passing it to CV and final learning

	process_labels::Bool = true: process labels to comply with binary (-1 vs. 1) or multi-class classification encoding

	tolerance::Float64 = 1e-5: the criterion is evaluated for early stopping (online_pass==0) [image: ||w_{t+1} - w_t|| <= tolerance]

	sparsity_cv::Float64 = 2e-1: sparsity weight in the combined cross-validation/sparsity criterion used for the RDA type of algorithms

	validation_criterion = MISCLASS(): validation criterion used to verify the generalization capabilities of the model in cross-validation

	Returns:	SALSAModel object with model.output of type OutputModel structured as follows:

	dfunc::Function: loss function derived from the type specified in loss_function::Type{L} (above)

	alg_params::Vector: vector of model- and algorithm-specific hyperparameters obtained via cross-validation

	X_mean::Matrix: row (vector) of extracted column-wise means of input X if normalized::Bool = true

	X_std::Matrix: row (vector) of extracted column-wise standard deviations of input X if normalized::Bool = true

	mode::M: mode used to learn the model: LINEAR vs. NONLINEAR

	w: found solution vector (matrix)

	b: found solution offset (bias)

using SALSA, MAT, Base.Test

srand(1234)
ripley = matread(joinpath(Pkg.dir("SALSA"), "data", "ripley.mat"))

model = SALSAModel(NONLINEAR, R_L1RDA(), HINGE, global_opt=CSA())
model = salsa(ripley["X"], ripley["Y"], model, ripley["Xt"])
@test_approx_eq_eps mean(ripley["Yt"] .== model.output.Ytest) 0.895 0.01

 Copyright 2015, Vilen Jumutc.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	SALSA 0.0.5 documentation

Regression

A regression example is explained for the SALSA package by the sinc(x) = sin(x)./x function.

This package provides a function salsa and explanation on SALSAModel for the regression case. This use case is supported by the Fixed-Size approach [FS2010] and Nyström approximation with the specific LEAST_SQUARES() loss function and cross-validation criterion mse() (mean-squared error).

using SALSA, Base.Test

srand(1234)
sinc(x) = sin(x)./x
X = linspace(0.1,20,100)''
Xtest = linspace(0.11,19.9,100)''
y = sinc(X)

model = SALSAModel(NONLINEAR, SIMPLE_SGD(), LEAST_SQUARES,
 validation_criterion=MSE(), process_labels=false)
model = salsa(X, y, model, Xtest)

@test_approx_eq_eps mse(sinc(Xtest), model.output.Ytest) 0.05 0.01

By taking a look at the code snippet above we can notice a major difference with the Classification example. The model is equipped with the NONLINEAR mode, LEAST_SQUARES loss function while the cross-validation criterion is given by MSE. Another important model-related parameter is process_labels which should be set to false in order to switch into regression mode. These four essential components unambiguously define a regression problem solved stochastically by the SALSA package.

	[FS2010]	De Brabanter K., De Brabanter J., Suykens J.A.K., De Moor B., “Optimized Fixed-Size Kernel Models for Large Data Sets”, Computational Statistics & Data Analysis, vol. 54, no. 6, Jun. 2010, pp. 1484-1504.

 Copyright 2015, Vilen Jumutc.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	SALSA 0.0.5 documentation

Clustering

A clustering example is explained for the SALSA package on the Iris dataset [UCI2010].

This package provides a function salsa and explanation on SALSAModel for the clustering case. This use case is supported by the particular choices of loss functions and distance metrics applied within the Regularized K-Means approach [JS2015] and cross-validation criterion SILHOUETTE (Silhouette index [https://en.wikipedia.org/wiki/Silhouette_(clustering)]).

using SALSA, Clustering, Distances, MLBase, Base.Test

Xf = readcsv(joinpath(Pkg.dir("SALSA"), "data", "iris.data.csv"))
Y = convert(Array{Int}, Xf[:,end])
k_clusters = length(unique(Y))
dY = Array{Int}(length(Y))
X = Xf[:,1:end-1]
srand(1234)

algorithm = RK_MEANS(k_clusters)
model = SALSAModel(LINEAR, algorithm, LEAST_SQUARES,
 validation_criterion=SILHOUETTE(),
 global_opt=DS([-1]), process_labels=false,
 cv_gen = Nullable{CrossValGenerator}(Kfold(length(Y),3)))
model = salsa(X, dY, model, X)
mappings = model.output.Ytest

By taking a close look at the code snippet above we can notice that we use a special type of an algorithm RK_MEANS() which implements approach in [JS2015]. By instantiating RK_MEANS(k_clusters) we provide a maximum number of clusters to be extracted. Learning of individual prototype vectors will be repeated algorithm.max_iter times after re-partitioning of the dataset X (by default algorithm.max_iter==20). The default choice of the loss function is LEAST_SQUARES and the distance metric is Euclidean() [1]. This corresponds to the original setting of the unregularized K-Means approach. Please refer to Algorithms section and RK_MEANS() function for more details regarding which combinations of loss functions and metrics are supported.

	[UCI2010]	Lichman, M. (2013). UCI Machine Learning Repository [http://archive.ics.uci.edu/ml]. Irvine, CA: University of California, School of Information and Computer Science.

	[JS2015]	(1, 2) Jumutc V., Suykens J.A.K., “Regularized and Sparse Stochastic K-Means for Distributed Large-Scale Clustering”, Internal Report 15-126, ESAT-SISTA, KU Leuven (Leuven, Belgium), 2015.

Footnotes

	[1]	metric types are defined in Distances.jl [https://github.com/JuliaStats/Distances.jl] package

 Copyright 2015, Vilen Jumutc.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	SALSA 0.0.5 documentation

Loss Functions

This part of the package provides a description and mathematical background of the implemented loss functions. Every loss function can be supplied to salsa subroutines either directly (see salsa()) or passed within SALSAModel. In the definitions below [image: l(y,p)] stands for the loss loss function evaluated at the true label [image: y] and a prediction [image: p].

	
HINGE()

	Defines an implementation of the Hinge Loss [https://en.wikipedia.org/wiki/Hinge_loss] function, i.e. [image: l(y,p) = \max(0,1 - yp)].

	
LOGISTIC()

	Defines an implementation of the Logistic Loss [https://en.wikipedia.org/wiki/Logit] function, i.e. [image: l(y,p) = \log(1 + \exp(-yp))].

	
LEAST_SQUARES()

	Defines an implementation of the Least Squares Loss [https://en.wikipedia.org/wiki/Mean_squared_error] function, i.e. [image: l(y,p) = \frac{1}{2}(p - y)^2].

	
SQUARED_HINGE()

	Defines an implementation of the Squared Hinge Loss function, i.e. [image: l(y,p) = \max(0,1 - yp)^2].

	
PINBALL()

	Defines an implementation of the Pinball (Quantile) Loss [http://www.lokad.com/pinball-loss-function-definition] function, i.e.

[image: l(y,p) = \left\lbrace\begin{array}{ll} 1 - yp, & \rm{if} \hspace{1mm} yp \leq 1, \\ \tau(yp - 1), & \rm{otherwise} \\ \end{array}\right.]

If PINBALL loss is selected [image: \tau] parameter will be tuned by the build-in cross-validation routines.

	
MODIFIED_HUBER()

	Defines an implementation of the Modified Huber Loss [https://en.wikipedia.org/wiki/Huber_loss] function, i.e.

[image: l(y,p) = \left\{\begin{array}{ll} -4yp, & \rm{if} \hspace{1mm} yp < -1 \\ \max(0,1 - yp)^2, & \rm{otherwise} \\ \end{array}\right.]

	
loss_derivative(type)

	Defines a derivative of the loss function. One can pass any type of the loss function, e.g. HINGE or an entire algorithm, for instance RK_MEANS().

	Parameters:	type – type of the loss function, e.g. HINGE or an entire algorithm

	Returns:	Function which calculates a derivative at the current iterate [image: w_t], subsample [image: \mathcal{A}_t] and label [image: y_t]

 Copyright 2015, Vilen Jumutc.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	SALSA 0.0.5 documentation

Algorithms

This part of the package provides a description, API and references to the implemented core algorithmic schemes (solvers) available in the SALSA package. Every algorithm can be supplied as a type to salsa subroutines either directly (see salsa()) or passed within SALSAModel. Please refer to Classification section for examples. Another available API is shipped with direct calls to algorithmic schemes. The latter is the most primitive and basic way of using SALSA package.

Available high-level API

	
PEGASOS()

	Defines an implementation (see pegasos_alg()) of the Pegasos: Primal Estimated sub-GrAdient SOlver for SVM [http://ttic.uchicago.edu/~shai/papers/ShalevSiSr07.pdf] which solves [image: l_2]-regularized problem defined here.

	
L1RDA()

	Defines an implementation (see l1rda_alg()) of the l1-Regularized Dual Averaging [http://research.microsoft.com/pubs/141578/xiao10JMLR.pdf] solver which solves [image: l_1]-regularized [https://en.wikipedia.org/wiki/Least_squares#Lasso_method] problem defined here.

	
ADA_L1RDA()

	Defines an implementation (see adaptive_l1rda_alg()) of the Adaptive l1-Regularized Dual Averaging [http://www.jmlr.org/papers/volume12/duchi11a/duchi11a.pdf] solver which solves [image: l_1]-regularized [https://en.wikipedia.org/wiki/Least_squares#Lasso_method] problem defined here in an adaptive way [1].

	
R_L1RDA()

	Defines an implementation (see reweighted_l1rda_alg()) of the Reweighted l1-Regularized Dual Averaging [ftp://ftp.esat.kuleuven.be/pub/SISTA/vjumutc/reports/reweighted_l1rda_jumutc_suykens.pdf] solver which approximates [image: l_0]-regularized problem in a limit.

	
R_L2RDA()

	Defines an implementation (see reweighted_l2rda_alg()) of the Reweighted l2-Regularized Dual Averaging [ftp://ftp.esat.kuleuven.be/pub/SISTA/vjumutc/reports/isnn2014_jumutc_suykens.pdf] solver which approximates [image: l_0]-regularized problem in a limit.

	
SIMPLE_SGD()

	Defines an implementation (see sgd_alg()) of the unconstrained Stochastic Gradient Descent scheme which solves [image: l_2]-regularized problem defined here.

	
RK_MEANS(support_alg, k_clusters, max_iter, metric)

	Defines an implementation (see stochastic_rk_means()) of the Regularized Stochastic K-Means approach [JS2015]. Please refer to Clustering section for examples.

	Parameters:	
	support_alg – underlying support algorithm, e.g. PEGASOS

	k_clusters – number of clusters to be extracted

	max_iter – maximum number of outer iterations

	metric – metric to evaluate distances to centroids [2]

Selected metric unambiguously define a loss function used to learn centroids. Currently supported metrics are:

	Euclidean() which is complemented by LEAST_SQUARES() loss function

	CosineDist() which is complemented by HINGE() loss function

Available low-level API

	
pegasos_alg(dfunc, X, Y, λ, k, max_iter, tolerance[, online_pass=0, train_idx=[]])

	

	Parameters:	
	dfunc – supplied loss function derivative (see loss_derivative())

	X – training data (samples are stacked row-wise) represented by Matrix, SparseMatrixCSC or DelimitedFile()

	Y – training labels corresponding to X

	λ – trade-off hyperparameter

	k – sampling size at each iteration [image: t]

	max_iter – maximum number of iterations (budget)

	tolerance – early stopping threshold, i.e. [image: ||w_{t+1} - w_t|| <= tolerance]

	online_pass – number of online passes through data, online_pass=0 indicates a default stochastic mode instead of an online mode

	train_idx – subset of indices from X used to learn a model ([image: w, b])

	Returns:	[image: w, b]

	
sgd_alg(dfunc, X, Y, λ, k, max_iter, tolerance[, online_pass=0, train_idx=[]])

	

	Parameters:	
	dfunc – supplied loss function derivative (see loss_derivative())

	X – training data (samples are stacked row-wise) represented by Matrix, SparseMatrixCSC or DelimitedFile()

	Y – training labels corresponding to X

	λ – trade-off hyperparameter

	k – sampling size at each iteration [image: t]

	max_iter – maximum number of iterations (budget)

	tolerance – early stopping threshold, i.e. [image: ||w_{t+1} - w_t|| <= tolerance]

	online_pass – number of online passes through data, online_pass=0 indicates a default stochastic mode instead of an online mode

	train_idx – subset of indices from X used to learn a model ([image: w, b])

	Returns:	[image: w, b]

	
l1rda_alg(dfunc, X, Y, λ, γ, ρ, k, max_iter, tolerance[, online_pass=0, train_idx=[]])

	

	Parameters:	
	dfunc – supplied loss function derivative (see loss_derivative())

	X – training data (samples are stacked row-wise) represented by Matrix, SparseMatrixCSC or DelimitedFile()

	Y – training labels corresponding to X

	λ – trade-off hyperparameter

	γ – hyperparameter involved in elastic-net regularization

	ρ – hyperparameter involved in elastic-net regularization

	k – sampling size at each iteration [image: t]

	max_iter – maximum number of iterations (budget)

	tolerance – early stopping threshold, i.e. [image: ||w_{t+1} - w_t|| <= tolerance]

	online_pass – number of online passes through data, online_pass=0 indicates a default stochastic mode instead of an online mode

	train_idx – subset of indices from X used to learn a model ([image: w, b])

	Returns:	[image: w, b]

	
adaptive_l1rda_alg(dfunc, X, Y, λ, γ, ρ, k, max_iter, tolerance[, online_pass=0, train_idx=[]])

	

	Parameters:	
	dfunc – supplied loss function derivative (see loss_derivative())

	X – training data (samples are stacked row-wise) represented by Matrix, SparseMatrixCSC or DelimitedFile()

	Y – training labels corresponding to X

	λ – trade-off hyperparameter

	γ – hyperparameter involved in elastic-net regularization

	ρ – hyperparameter involved in elastic-net regularization

	k – sampling size at each iteration [image: t]

	max_iter – maximum number of iterations (budget)

	tolerance – early stopping threshold, i.e. [image: ||w_{t+1} - w_t|| <= tolerance]

	online_pass – number of online passes through data, online_pass=0 indicates a default stochastic mode instead of an online mode

	train_idx – subset of indices from X used to learn a model ([image: w, b])

	Returns:	[image: w, b]

	
reweighted_l1rda_alg(dfunc, X, Y, λ, γ, ρ, ɛ, max_iter, tolerance[, online_pass=0, train_idx=[]])

	

	Parameters:	
	dfunc – supplied loss function derivative (see loss_derivative())

	X – training data (samples are stacked row-wise) represented by Matrix, SparseMatrixCSC or DelimitedFile()

	Y – training labels corresponding to X

	λ – trade-off hyperparameter

	γ – hyperparameter involved in reweighted formulation of a regularization term

	ρ – hyperparameter involved in reweighted formulation of a regularization term

	ɛ – reweighting hyperparameter

	k – sampling size at each iteration [image: t]

	max_iter – maximum number of iterations (budget)

	tolerance – early stopping threshold, i.e. [image: ||w_{t+1} - w_t|| <= tolerance]

	online_pass – number of online passes through data, online_pass=0 indicates a default stochastic mode instead of an online mode

	train_idx – subset of indices from X used to learn a model ([image: w, b])

	Returns:	[image: w, b]

	
reweighted_l2rda_alg(dfunc, X, Y, λ, ɛ, varɛ, max_iter, tolerance[, online_pass=0, train_idx=[]])

	

	Parameters:	
	dfunc – supplied loss function derivative (see loss_derivative())

	X – training data (samples are stacked row-wise) represented by Matrix, SparseMatrixCSC or DelimitedFile()

	Y – training labels corresponding to X

	λ – trade-off hyperparameter

	ɛ – reweighting hyperparameter

	varɛ – sparsification hyperparameter

	k – sampling size at each iteration [image: t]

	max_iter – maximum number of iterations (budget)

	tolerance – early stopping threshold, i.e. [image: ||w_{t+1} - w_t|| <= tolerance]

	online_pass – number of online passes through data, online_pass=0 indicates a default stochastic mode instead of an online mode

	train_idx – subset of indices from X used to learn a model ([image: w, b])

	Returns:	[image: w, b]

	
stochastic_rk_means(X, rk_means, alg_params, max_iter, tolerance[, online_pass=0, train_idx=[]])

	

	Parameters:	
	X – training data (samples are stacked row-wise) represented by Matrix, SparseMatrixCSC or DelimitedFile()

	rk_means – algorithm defined by RK_MEANS()

	alg_params – hyperparameter of the supporting algorithm in rk_means.support_alg

	k – sampling size at each iteration [image: t]

	max_iter – maximum number of iterations (budget)

	tolerance – early stopping threshold, i.e. [image: ||w_{t+1} - w_t|| <= tolerance]

	online_pass – number of online passes through data, online_pass=0 indicates a default stochastic mode instead of an online mode

	train_idx – subset of indices from X used to learn a model ([image: w, b])

	Returns:	[image: w, b]

Footnotes

	[1]	adaptation is taken with respect to observed (sub)gradients of the loss function

	[2]	metric types are defined in Distances.jl [https://github.com/JuliaStats/Distances.jl] package

 Copyright 2015, Vilen Jumutc.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	SALSA 0.0.5 documentation

Model Tuning

This part of the package provides a simple API for model-tuning routines.

	
gen_cross_validate(evalfun, n, model)

	Perform in parallel a generic cross-validation (CV) routine defined in evalfun by the splitting specified in model.cv_gen.

	Parameters:	
	evalfun – function to evaluate

	n – total number of data points (instances) to create Kfold CV generator if model.cv_gen is undefined (null)

	model – SALSAModel which contains the cv_gen field of type Nullable{CrossValGenerator} [1] or model.output.cv_folds field containing predefined indices for each fold

	Returns:	an average of evalfun evaluations.

	
misclass(y, yhat)

	Calculate misclassification rate as [image: \frac{1}{n}\sum_{i=1}^n I(y_i \neq \hat{y}_i)].

	
mse(y, yhat)

	Calculate mean squared error as [image: \frac{1}{n}\|y - \hat{y}\|^2]

	
auc(y, yhat[, n=100])

	Calculate Area Under ROC [https://en.wikipedia.org/wiki/Receiver_operating_characteristic] Curve. Default number of thresholds is 100.

Footnotes

	[1]	wrapper around the type defined in MLBase.jl [https://github.com/JuliaStats/MLBase.jl] package

 Copyright 2015, Vilen Jumutc.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	SALSA 0.0.5 documentation

Nyström Approximation

While linear techniques operating in the primal (input) space are able to achieve good generalization capabilities in some specific application areas, one cannot in general approximate with the linear model more complex or highly nonlinear functions. We apply a Fixed-Size approach [FS2010] and Nyström approximation [WS2001] to approximate a kernel-induced feature map with some higher dimensional explicit and approximate feature vector.

We select prototype vectors (a small working sample of size [image: m \ll n]) and construct, for instance an RBF kernel matrix [image: K] with

[image: K_{ij} = e^{-\frac{\Vert x_i-x_j \Vert ^2}{2\sigma^2} }.]

By following the approach in [WS2001] an expression for the entries of the approximated feature map [image: \hat{\Phi}(x) : \mathbb{R}^d \rightarrow \mathbb{R}^m], with [image: \hat{\Phi}(x) = (\hat{\Phi}_1(x),\ldots,\hat{\Phi}_m(x))^T] is given by

[image: \hat{\Phi}_i(x) = \frac{1}{\sqrt{\lambda_{i,m}}} \sum_{t=1}^m u_{ti,m}k(x_t,x),]

where [image: \lambda_{i,m}] and [image: u_{i,m}] denote the i-th eigenvalue and the i-th eigenvector of [image: K].

Available API

	
AFEm(Xs, kernel, X)

	Performs Automatic Feature Extraction (AFE) by Nyström method [WS2001] using a subsample [image: X_s \in X]. We restrict kernel <: Kernel to be a subclass of Kernel, for instance RBFKernel.

	Parameters:	
	Xs – subset which is used to construct kernel matrix [image: K]

	kernel – kernel function, e.g. RBFKernel(), used to construct kernel matrix [image: K]

	X – full dataset

	Returns:	new dataset [image: X_f] derived from stacking together feature maps for every [image: x_i \in X]

	
entropy_subset(X, kernel, subset_size)

	Performs maximization of the quadratic Rényi Entropy [https://en.wikipedia.org/wiki/Rényi_entropy] by the representative points selection from X which can be supplied to AFEm as Xs subset.

	Parameters:	
	X – full dataset

	kernel – kernel function, e.g. RBFKernel(), used to construct kernel matrix [image: K] over which we compute Rényi Entropy

	subset_size – number of representative data points

Available Kernel Functions

	
LinearKernel()

	Defines an implementation of the Linear Kernel, i.e. [image: k(x,y) = \langle x,y \rangle].

	
PolynomialKernel()

	Defines an implementation of the Polynomial Kernel, i.e. [image: k(x,y) = (\langle x,y \rangle + \tau)^d].

	
RBFKernel()

	Defines an implementation of the Radial Basis Function (RBF) Kernel, i.e. [image: k(x,y) = \exp(-\frac{\|x - y\|^2}{2\sigma^2})].

	[WS2001]	(1, 2, 3) Williams C. and Seeger M., “Using the Nyström method to speed up kernel machines”, in Proceedings of the 14th Annual Conference on Neural Information Processing (NIPS), pp. 682-688, 2001.

 Copyright 2015, Vilen Jumutc.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 previous |

 	SALSA 0.0.5 documentation

Examples & notebooks

Prerequisites

Please refer to Julia downloads [http://julialang.org/downloads] page for installing Julia language and all dependencies. The instructions for installing the SALSA package can be found here. Some additional plotting and data management packages might be required to run examples below (like Gadfly, MAT or DataFrames). If you prefer Python-style notebooks please refer to the Project Jupyter [http://jupyter.org] and IJulia [http://github.com/JuliaLang/IJulia.jl] package for instructions. In this section we provide code snippets which can be easily copied into the Julia console or Jupyter notebook. Please find an explanation on examples and functional IJulia notebooks online [https://drive.google.com/folderview?id=0B7FqDhPLnLXkaDNEaEllTmJ3ajg&usp=sharing].

Advanced Classification

This example provides a use-case for nonlinear classification using Nyström approximation and Area Under ROC [https://en.wikipedia.org/wiki/Receiver_operating_characteristic] Curve (with 100 thresholds) as a cross-validation criterion.

using SALSA, MAT

ripley = matread(joinpath(Pkg.dir("SALSA"), "data", "ripley.mat")); srand(123);
model = SALSAModel(NONLINEAR, PEGASOS(), LOGISTIC, validation_criterion=AUC(100));
model = salsa(ripley["X"], ripley["Y"], model, ripley["Xt"]);

range1 = linspace(-1.5,1.5,200);
range2 = linspace(-0.5,1.5,200);
grid = [[i j] for i in range1, j in range2];

Xgrid = foldl(vcat, grid);
Xtest = ripley["Xt"];

yhat = model.output.Ytest;
yplot = map_predict_latent(model,Xgrid);
yplot = yplot - minimum(yplot);
yplot = 2*(yplot ./ maximum(yplot)) - 1;

using DataFrames
df = DataFrame();
df[:X] = Xgrid[:,1][:];
df[:Y] = Xgrid[:,2][:];
df[:class] = yplot[:];

using Gadfly
set_default_plot_size(20cm, 20cm);
plot(layer(x=Xtest[yhat.>0,1], y=Xtest[yhat.>0,2], Geom.point, Theme(default_color=colorant"orange")),
 layer(x=Xtest[yhat.<0,1], y=Xtest[yhat.<0,2], Geom.point, Theme(default_color=colorant"black")),
 layer(df, x="X", y="Y", color="class", Geom.rectbin))

[image: Advanced Classification Example]

Advanced Regression

This example provides a use-case for regression using Nyström approximation and mse() (Mean Squared Error) as a criterion in the Leave-One-Out [https://en.wikipedia.org/wiki/Cross-validation_(statistics)] cross-validation defined in MLBase.jl [https://github.com/JuliaStats/MLBase.jl] package.

using SALSA, MLBase

sinc(x) = sin(x)./x;
X = linspace(0.1,20,100)'';
Xtest = linspace(0.1,20,200)'';
Y = sinc(X);
srand(1234);

model = SALSAModel(NONLINEAR, PEGASOS(), LEAST_SQUARES,
 cv_gen=Nullable{CrossValGenerator}(LOOCV(100)),
 validation_criterion=MSE(), process_labels=false, subset_size=5.0);
model = salsa(X, Y, model, Xtest);

using Gadfly
set_default_plot_size(20cm, 20cm);
plot(layer(x=Xtest[:], y=sinc(Xtest), Geom.point),
 layer(x=Xtest[:], y=model.output.Ytest, Geom.line, Theme(default_color=colorant"orange")))

[image: Advanced Regression Example]

 Copyright 2015, Vilen Jumutc.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	SALSA 0.0.5 documentation

Index

 A
 | D
 | E
 | G
 | H
 | L
 | M
 | P
 | R
 | S

A

 	

 	ADA_L1RDA() (built-in function)

 	adaptive_l1rda_alg() (built-in function)

 	

 	AFEm() (built-in function)

 	auc() (built-in function)

D

 	

 	DelimitedFile() (built-in function)

E

 	

 	entropy_subset() (built-in function)

G

 	

 	gen_cross_validate() (built-in function)

H

 	

 	HINGE() (built-in function)

L

 	

 	L1RDA() (built-in function)

 	l1rda_alg() (built-in function)

 	LEAST_SQUARES() (built-in function)

 	

 	LinearKernel() (built-in function)

 	LOGISTIC() (built-in function)

 	loss_derivative() (built-in function)

M

 	

 	make_sparse() (built-in function)

 	mapstd() (built-in function), [1]

 	misclass() (built-in function)

 	

 	MODIFIED_HUBER() (built-in function)

 	mse() (built-in function)

P

 	

 	PEGASOS() (built-in function)

 	pegasos_alg() (built-in function)

 	

 	PINBALL() (built-in function)

 	PolynomialKernel() (built-in function)

R

 	

 	R_L1RDA() (built-in function)

 	R_L2RDA() (built-in function)

 	RBFKernel() (built-in function)

 	

 	reweighted_l1rda_alg() (built-in function)

 	reweighted_l2rda_alg() (built-in function)

 	RK_MEANS() (built-in function)

S

 	

 	salsa() (built-in function), [1], [2]

 	sgd_alg() (built-in function)

 	SIMPLE_SGD() (built-in function)

 	

 	SQUARED_HINGE() (built-in function)

 	stochastic_rk_means() (built-in function)

 Copyright 2015, Vilen Jumutc.
 Created using Sphinx 1.3.5.

 _images/math/4f09cda52a1badedf699b3b6ef0cab8d7ee149ad.png

_images/math/62204539de5bf416fa293cb586a2c1c0e15b2f9f.png

_images/math/08bba7896e10a2317915c11ceb5af42db2bdd4e1.png
ign((zr,w) + b)

_images/math/dd5857c44fe96a5cd56db0b6b4860c78d9a1ee28.png

_static/up.png

_images/math/7e5b289731f885fe1bb16dbfae89c9fa1b29a636.png

_static/down-pressed.png

_images/math/d9e99c35d3632bb156b7aca0e93cd78a148a10e8.png

_images/math/74c713b8e1ffbdb2755232d14c28023c4ee8159d.png

_images/math/005fb13251451f6b72c004e11981ca36b0b22fb4.png
k(z,y) = ({z,y) + 7)°

_static/logo_grey.png

_static/comment-close.png

_static/ajax-loader.gif

_images/math/28e003020d0ae96250b302d7d779c791f183f707.png

_static/down.png

_images/math/59c5440101e6ddb6d52d7d94a9d5dbd4b267d0f8.png
k(z,y) = exp(—1E40)

_static/comment.png

_static/plus.png

_images/math/22e03d70d7bdc624eecd05339730e4e5c028db3e.png
O(z): RE - R™

search.html

 Navigation

 		
 index

 		SALSA 0.0.5 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2015, Vilen Jumutc.
 Created using Sphinx 1.3.5.

_images/math/0f81dc1804a3b787c0708c8ecd343c3c22ce5f75.png

_images/math/8fe99addf37b3b35be0a40db327486093b5274ff.png

_images/math/85fa4d52aa1154a6ea434e4d4a9573239de15c78.png
yp, ifyp < —
max(0,1 — yp)?, otherwise

_static/minus.png

_images/math/ee817668c411dd3be5ce86292ded9384db657a31.png

_static/up-pressed.png

_images/math/d5d6576cf752c4e1ed71191fee0b83bb298b2a61.png
l(y,p):{ Loygp, ifyp <1,
7(yp—1), otherwise

_images/math/8ccad8a53cfb904a24bb4efb1ec158665a1c8080.png
=S Iy # i)

_static/file.png

_images/math/ddef7ff8a4719fc5da6edb08ae6575c136904f00.png

_images/logo.png

_images/sinc.png

_static/comment-bright.png

_images/math/08b4446658eaa082235fcea31286551e3b408211.png
|w||q

_images/ripley.png
53 533 3

05

_images/math/38a8d757f0d208fe4323aa3e8b0b3b94d14dc4e9.png
= ||y — gl|?

_images/SALSA.png

_images/math/851fc2e239831f365f0ab4500de0873028681ebf.png
flw, &)

_images/math/08679420fb326d0fc7a2c48abaae907f841224b8.png

_images/math/8e2fad164dd6987a25bd3f9fe9ede7006e5f060d.png

_images/math/3e28c5b67dbe9dd67e444b3da60e04ec3a6528dd.png

_images/math/26359e6e070e1c996f3e00f5885ff7aa27dabc09.png

_images/math/004539e4342d906bdbe5b00eecb61f623485deb7.png
l(y,p) = 5(p—y)’

_images/math/6d42c88506b8da39a2a23653aecbfb7c29728063.png

_images/math/3eca8557203e86160952e1c0f735f7417f3285b1.png

_images/math/ef9270877405055756d345facd044e4ab297f858.png

_images/math/c2bb658f4157749d0c0148c950ca2e7350fb885b.png

_images/math/c655b30a02fd4511be2c38bedc8cd74009f27b54.png
r; € X

_images/math/c8ebc0c8569c59cea664c948a02e7e3e5d3e88b4.png

_images/math/c3c1a9a14af2426da29826061b0c9226970b7b7f.png
wi

_images/math/22b6afbc1a785f5060c3e5bb141896c01f2403d9.png
[{y,p) = max(0,1 — yp)

_images/math/37a40b25a919a1e390a493abb634fe514e49e5f4.png

_images/math/3d6c7e250b94ddf7f5099fb75e5807221deb3d00.png
k(z,y) = (T, y)

_images/math/9d669dcee9ec931ba4511732321c1f2b953aa06d.png

_images/math/a5f68d30295488baf7e4d5102946e267e19fa6b7.png

_images/math/86caede82d359ede105c9c1cfed6ae07b3ccfbb4.png
[(y.p) = max(0,1 — yp)?

_images/math/cc402c8515cdaa62b818e43bda2536e293d029fb.png

_images/math/f6cd47080452a75befad353964c07035f4f4d991.png
[y, p) = log(l + exp(—yp))

_images/math/baa16875ad69d70a9d64eeea8c9a2ea7ad3730c0.png

_images/math/e99e3deeedc03947a8d04ee5eb2d1964e4634f27.png

_images/math/b124ff74afb0914bb434e8fb849eb56d734412f8.png

_images/math/fc9b39d13c288347abb9aef1e1591a4ea3b85b00.png
ut

_images/math/4edbd88750539c2610a7bbfcf79c33cf1ae7a36c.png

_images/math/bd0e96277973664c143ccf848d7cf034d3494cb3.png
Ik

_images/math/43d288c6adbdc294d508d643ebb3e003ec1f946f.png
tolerance

[wyeq1 — wyl|

